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DurDuring their evolution, the genomes of micro-organisms can acquire quantities of different repeated elements such as retrotransposons, duplicated genes or tandem repeats. This type of sequence within genomes cannot 
be processed directly by NGS technologies because they generate short reads that cannot be located unambiguously on reference genomes. This information is filtered out by most current pipelines, leading to incomplete 
genomics tracks resulting in a significant loss of information on biological functions, processes and genomic structures involving repeated elements. To overcome these limitations we developped Hicberg, an alogorithm 
that uses statistical inference and pseudo-random generators to predict the positions of repeated sequences' reads  from different omics paired-end data (including Hi-C, Mnase-seq, ChIP-seq, ...), based multiple 
components relative to the polymeric behavior of the DNA and sequencing protocoles' features, estblished on the non unmbiguous part of the tracks. Thus read pairs belonging to repeated sequences can be assigned with 
robust confidence in genomes filling-in genomic tracks. After development and calibration on a controled test bench Hicberg improves genomic data interpretability of various species, starting with microbial one such as 
Saccharomyces cerevisiae.
Reconstructions of Hi-C and ChIP-seq genomic tracks with Hicberg revealed how some retrotransposons in this model contribute to the positioning of cohesin, a molecular motor involved in the formation of chromatin 
loops. A new role of retrotransposon sequences as contact hot points for the elusive yeast 2 micron episomal molecule was also identified.Overall, these results underline the power of the approach to discover new novel 
molecular relationships, and the interest in applying this tool more widely to larger genomes with greater quantityof repeats. The proposed method can therefore provide an alternative visualization of genomic signals in a 
wide variety of biological conditions and allow a more comprehensive view of genome organization and plasticity. Importantly, existing dataset can be revisited using this approach to unveil overlook features. 
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In-silico validation show that Hicberg is robust to :
 
• the number of repeated sequences
• the separation between repeated sequences
• the size of repeated sequences

Hicberg in-silico assessment

Leveraging pair-end features to reduce ambiguity Hicberg workflow Hicberg vs mHiC

Hicberg paves the way to the exploration of functional 3D organization of structures involving repeated 
elements such as V. cholerae super integron, S. cerevisiae transposable elements, P. falciparum telomeric 
regions, etc.

Currently applied on genomes of ~ 100Mb in size carrying variable repeated sequences involved in 
pathogenicity (V. dahliae, E. festucae)

Hicberg allow working with more complete set of data that will also improve the quality of the already 
visible part of genomes giving more evenly distributed signals at the genome scale

Hicberg may improve Hi-C normalization procedure and specific patterns detections such as peaks (1D 
signals) and loops/domains (Hi-C).

Hicberg retrives telomere clustering under SIR3 over-expression

Hi-C experiment Hi-C prdocues different read pairs configurations

Hicberg retrives rDNA - telomeres clustering
under SIR3 over-expression

Tys as hot spots for 2µ plasmid anchoringHicberg retrives coherent chromatin loops along cell cycle

As previously described 2-micron plasmid preferentially contact the yeast genome on low transcribed regions
Hicberg revealed that Tys are preferred contact sites for 2-micron plasmid as they are low level transcribed regions

L-sub telomere

Data : Piazza A, Bordelet H. and al.  Cohesin regulates homology search during recombinational DNA repair. 2021

Telomere clustering under the influence of SIR3 (previously 
demonstrated by Ruault & al. 2021) is recovered using hicberg 
without the need for prior processing of Hi-C data, giving access to 
subtelomeric zones, normally not detemrinated due to the repeated 
nature of the sequences.

rDNA/telomere clustering under the influence of SIR3 in exponential 
phase (Ruault & al. 2021) is recovered using hicberg without the 
need for prior processing of Hi-C data, giving access to subtelomeric 
zones, normally not detemrinated due to the repeated nature of 
both rDNA and telomere sequences.

The Hi-C reconstruction criteria proposed by mHiC, mainly based on the 
otherwise stringent P(s), lead to the appearance of less well-defined 
structures and artifactual structures. 
Hicberg proposes better-defined, non-artifactual structures.

Hicberg's reconstructions of regions containing Tys reveal the presence of cohesin loops in G2 phase, which are absent 
in G1 as previously demonstrated.
Furthermore, ChIP-seq SCC1 reconstructions reveal cohesin placement at converging genes adjacent to Tys.

Genomic coverage also offers discriminating 
power for ambiguous contacts assignation

Distances to the closest restriction site for Hi-C 
reads can help for the assgignation of 
ambiguous contacts especially for old protocols 
using 6bp-cutter

The various Hi-C patterns show variation in P(s) 
providing discriminant power in the assignement 
of reads involved in repeated regions
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 Data :Ruault. et al. Sir3 mediates long-range chromosome interactions in budding yeast. 2021.

 Data : Ruault and al. , Sir3 mediates long-range chromosome interactions in budding. 2021
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