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DurDuring their evolution, the genomes of micro-organisms can acquire quantities of different repeated elements such as retrotransposons, duplicated genes or tandem repeats. This type of sequence within genomes cannot 
be processed directly by NGS technologies because they generate short reads that cannot be located unambiguously on reference genomes. This information is filtered out by most current pipelines, leading to incomplete 
genomics tracks resulting in a significant loss of information on biological functions, processes and genomic structures involving repeated elements. To overcome these limitations, we developed Hicberg, an algorithm that 
uses statistical inference and pseudo-random generators to predict the positions of repeated sequences' reads  from different omics paired-end data (including Hi-C, Mnase-seq, ChIP-seq, ...). The model is  based on  
multiple components relative to the polymeric behavior of the DNA and sequencing protocols' features, established on the unambiguous part of the tracks. Thus read pairs belonging to repeated sequences can be 
assigned with robust confidence in genomes filling-in genomic tracks. After development and calibration on a controlled test bench Hicberg improves genomic data interpretability of various species, starting with 
microbial one such as Saccharomyces cerevisiae.

Reconstructions of Hi-C and ChIP-seq genomic tracks with Hicberg revealed how some retrotransposons in this model contribute to the positioning of cohesin, a molecular motor involved in the formation of chromatin 
loops. A new role of retrotransposon sequences as contact hot points for the elusive yeast 2 micron episomal molecule was also identified. Overall, these results underline the power of the approach to discover new novel 
molecular relationships and the interest in applying this tool more widely to larger genomes with greater quantity of repeats. The proposed method can therefore provide an alternative visualization of genomic signals in a 
wide variety of biological conditions and allow a more comprehensive view of genome organization and plasticity. Importantly existing dataset can be revisited using this approach to unveil overlook features. 
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In-silico validation shows that Hicberg is robust to:
 
• the number of repeated sequences
• the separation between repeated sequences
• the size of repeated sequences

Hicberg in-silico assessment

Bench-top comparison of signals generated by Hicberg for the detection of retrotransposons

Leveraging pair-end features to reduce mapping ambiguity Hicberg workflow Hicberg vs mHiC

Hicberg allows working with more complete set of data that will also improve the quality of the already visible part of 
genomes giving more evenly distributed signals at the genome scale.

Hicberg may improve Hi-C normalization procedure and specific patterns detections such as peaks (1D signals) and loops or 
domains (Hi-C).

Hicberg paves the way to the exploration of functional 3D organization of structures involving repeated elements such as 
telomeres, rDNA, Ty retrotransposons.

New questions can now be addressed through Hicberg :

 - the potential interaction of 2 parasitic objects: 2micron plasmid and retrotransposons given the spatial colocation found   
through Hicberg.

 - the involvement of Tys in the positioning and functioning of loop extrusion molecular motors.

 - study of the mobility and structural impact of repeated elements during the evolution of S. cerevisiae genomes.

Hicberg retrieves telomere clustering under SIR3 over-expression

Hi-C experiment

Hicberg retrieves rDNA - telomeres clustering
under SIR3 over-expression

Tys as hot spots for 2µ plasmid anchoringHicberg retrieves chromatin loops along cell cycle

As previously described 2-micron plasmid preferentially contact the yeast genome on low transcribed regions
Hicberg revealed that Tys are preferred contact sites for 2-micron plasmid as they are low level transcribed regions

L-sub telomere

Data : Piazza A, Bordelet H. and al.  Cohesin regulates homology search during recombinational DNA repair. 2021

Telomere clustering under the influence of SIR3 (previously 
demonstrated by Ruault & al. 2021) is recovered using Hicberg 
without the need for prior processing of Hi-C data, giving access to 
subtelomeric areas, normally not determinated due to the repeated 
nature of the sequences.

rDNA/telomere clustering under the influence of SIR3 in exponential 
phase (Ruault & al. 2021) is recovered using Hicberg without the 
need for prior processing of Hi-C data, giving access to subtelomeric 
zones, normally not available due to the repeated nature of both 
rDNA and telomeres sequence.

The statistical inference behind Hicberg is based on a complete reconstruction of 
the data, including very short-range events (< 1 kb), unlike the mHiC approach, 
which proposes a reconstruction after delicate filtering of short-range contacts, 
which can generate distortions in the reconstructions.  

Hicberg's reconstructions of regions containing Tys reveal the presence of cohesin loops in G2 phase, which are absent 
in G1 as previously demonstrated.
Furthermore, ChIP-seq Scc1 reconstructions reveal cohesin placement at Tys retrostransposon in convergent 
configuration sites.

Genomic coverage also offers discriminating 
power for ambiguous contacts assignation.

Distances to the closest restriction site for 
Hi-C reads can help for the assignation of 
ambiguous contacts especially for old 
protocols using 6bp-cutter.

The various Hi-C patterns show variation in 
contact frequency, separation dependent 
providing discriminant power in the 
assignment of reads involved in repeated 
regions.
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